Developing Surrogate Measurements for the Analysis of Produced Water

Zacariah L. Hildenbrand, Ph.D. Research Professor University of Texas at El Paso 3/29/23

OIL FIELD WATER MANAGEMENT SYMPOSIUM MARCH 29-30, 2023

Killing Two Birds

Liden et al., Water 2019

SDWA

+Additional polishing

Treated Water Applications

Santos et al., Analytical Chemistry 2018 Liden et al., Sep. Sci. Tech. 2019

Objectives of this Study

1) Determine we 'how clean is clean enough' for the beneficial reuse application

Hildenbrand et al., Sci. Tot. Environ. 2018

Comprehensive Analyses

1)Basic water quality (YSI multimeric probe)

pH, TDS, conductivity, salinity, ORP, TSS, turbidity

- Anions (Liquid Chromatography, Inductively Coupled Plasma Optical Emission Spectroscopy) 2) Br, Ca, Cl, Fe, K, Mg, Na, Sr, and SO₄
- Metals (Inductively Coupled Plasma Mass Spectrometry) 3) 41 different ions including As, Ba, Fe, Ni, Sr, Pb, etc.
- Total organic carbon / total nitrogen (TOC/TN Analyzer) 4) Organic carbon, inorganic carbon, nitrogen
- Volatile and semi-volatile organic compounds (Gas Chromatography Flame Ionization Detection, Head Space Gas Chromatography 5) Flame Ionization Detection)

Alcohols, alkyl hydrocarbons, aromatic hydrocarbons (i.e., BTEX)

Untargeted analysis of (Liquid Chromatography - Quadrupole Time of Flight Mass Spectrometry, Gas Chromatography Mass, 6) Spectrometry w/ Vacuum Ultraviolet Detection, Thin Film Solid Phase Microextraction - Chromatography) Various volatile, semi-volatile, nonvolatile organic compounds, PFAS/PFOA

- Microbial (Matrix Assisted Laser Desorption Ionization Time of Flight Mass Spectrometry, DNA sequencing, and ATP assay) 7) 2,500+ different microbial species and overall microbial counts
- Toxicological (MicroTox and ecotoxicity assays) 8) Measurements of acute and chronic toxicity

PFAS/PFOA Analysis

Name	Abbreviation	Carbon number	Molecular weight (g/mol)	log P	рКа
Perfluoro-n-butanoic acid	PFBA	C4	214.0	2.31	1.07
Perfluoro-n-pentanoic acid	PFPeA	C5	264.0	3.01	0.34
Perfluoro-n-hexanoic acid	PFHxA	C6	314.0	3.71	078
Perfluoro-n-heptanoic acid	PFHpA	C7	364.0	4.41	-2.29
Perfluoro-n-octanoic acid	PFOA	C8	414.0	5.11	-4.2
Perfluoro-n-nonanoic acid	PFNA	C9	464.0	5.81	-6.51
Perfluoro-n-decanoic acid	PFDA	C10	514.0	6.51	-5.2
Perfluoro-n-undecanoic acid	PFUdA	C11	564.0	7.22	-5.2
Perfluoro-n-tridecanoic acid	PFTrDA	C13	664.0	8.62	-5.2
Perfluoro-n-tetradecanoic acid	PFTeDA	C14	714.0	9.32	-5.2
Perfluorobutanesulfonic acid	PFBS	C4	338.2	2.63	-3.31
Perfluorooctanesulfonic acid	PFOS	C8	522.1	5.43	-3.32
N-methylperfluoro-1- octanesulfonamidoacetic acid	MeFOSAA	C11	571.2	4.78	1.23
N-ethylperfluoro-1- octanesulfonamidoacetic acid	EtFOSAA	C12	585.2	5.14	1.34
Hexafluoropropylene oxide dimer acid	GenX (HFPO-DA)	C6	330.1	4.0	-0.77
Internal standard	Molecular weight (g/mol)				
¹³ C ₃ GenX	287				
¹³ C ₈ PFOA	421				
¹³ C ₈ PFOS	507				
¹³ C ₂ PFUdA	565				

LOQs ~ 5ng/L

Untargeted GC-MS Analysis

RT	NAME	MF	AREA
10.3724	Acetic acid, (acetyloxy)-	80.4	8415.2
12.706	4-Ethylcyclohexanol	88.3	61876.6
12.3936	Cyclohexanone, 2-ethyl-	83.5	110413.9
14.2738	alpha-Campholenal	80.9	193303.3
20.2992	2,2,4-Trimethyl-1,3-pentanediol diisobutyrate	75.6	58021.9
13.5343	2,5-Furandicarboxaldehyde	70.6	13950.7
9.326	Ethylbenzene	86.7	93097.1
14.0865	Ethanone, 1-(4-methylphenyl)-	80.1	18748
10.4453	2-Propanol, 1-butoxy-	88.4	27129.4
16.8146	Quinoline, 6-methyl-	73.3	60627.6
7.7099	2,4-Pentanedione, 3-methyl-	79.6	34074.3
27.8208	Methyl dehydroabietate	76.4	59699.5
22.4155	Octadecane	84.7	92405.5
22.1168	Benzenemethanamine, N-(phenylmethylene)-	75.6	88343.1
20.2042	Hexadecane	94.2	95368.1
17.917	Dodecanal	82	366059.7
9.2826	Styrene	81.1	65939.2
11.3731	1-Decene	77.4	108400.1
10.87	Benzaldehyde	98	1618260
14.7991	1-Dodecene	95.9	152856.8
22.5318	Benzenesulfonamide, N-butyl-	93.3	164235

$LODs < 1\mu g/L (ppb)$

Toxicological Assays

Method Characteristics	<i>S. capricornutum</i> EPA 1003.0	V. <u>fischeri</u> Microtox ISO11	
Туре	Chronic	Acute	
Endpoint	Growth	Inhibition	
Time:	96 h	15 min	
Organism			
Role	Producer	Decomposer	
Methods	EPA-821-R-02-013,	ISO 11348:20	

Method 1003.0

07

Toxicological Standards

Objectives of this Study

1) Determine how 'how clean is clean enough' for the beneficial reuse application Comprehensive biogeochemical and toxicological testing

2) Evaluate whether or not TOC/conductivity measurements could be representative indicators of overall water quality

Collectively, these measurements may allow us to distill 1,000s of pertinent water quality measurements down to two metrics, the levels of which could help determine the appropriate terminal destination for any treated produced water Saving time, money, and other resources

Hypothetical Example

Source	Treatment*	TOC (mg/L)	SPC (mS/cm)	# VOCs & SVOCs	# Untargeted Compounds	Bacteria (CFU/mL)	Toxicity (1-10)	Terminal Destination
Raw Permian	Raw	2,300	140	85	21	5,000,000	10	Disposal
Partially Treated	OX, PF	100	130	15	5	2,000,000	5	Direct Reuse
Partially Treated	OX, PF, CF	25	110	5	3	1,500,000	4	Direct Reuse
Fully Treated	OX, PF, CF, RO	10	1	2	1	<1,000	2	Agricultural Discharge
Fully Treated	OX, PF, CF, FD	5	0.5	1	0	<1,000	2	Agricultural Discharge
Fully Treated	OX, CAV, SD	2.5	0.4	0	0	<1,000	1	Agricultural Discharge
zing Ager	nt. PF=Partic	ulate Fil	tration. C	C=Carbo	on Filtration	n. RO=Rev	/erse	

* OX=Oxidiz Osmosis, FD= Flash Distillation, CAV=Cavitation, SD=Solar Distillation

Samples to Date

	Col	lected To Date		<i>En Route</i> (n		
Region	Raw	Treated- Clean Brine	Treated- Desal	Raw	Treated- Clean Brine	
Control Samples			6			
Permian	4	18	6			
Eagle Ford		1				
Arkhoma		1				
San Juan	2		2			
Marcellus	1		2			
Haynesville		1				
TOTALS	7	21	16	0	0	

How Clean is Clean Enough?

How Clean is Clean Enough?

How Clean is Clean Enough?

Hildenbrand et al., unpublished preliminary data

OFWINS

Reliable Surrogates?

What we've Learned so far

Source	Treatment*	TOC (mg/L)	SPC (mS/cm)	# VOCs & SVOCs	# Untargeted Compounds	Bacteria (CFU/mL)
Raw Permian	Raw	2,300	140	85	21	5,000,000
Partially Treated	OX, PF	100	130	15	5	2,000,000
Partially Treated	OX, PF, CF	25	110	5	3	1,500,000
Fully Treated	OX, PF, CF, RO	10	1	2	1	<1,000
Fully Treated	OX, PF, CF, FD	5	0.5	1	0	<1,000
Fully Treated	VARIOUS	<2.0	<0.7 <400 mg/L TDS	0	<75	<100

Hildenbrand et al., unpublished preliminary data

Toxicity (1-10)	Terminal Destination
10	Disposal
5	Direct Reuse
4	Direct Reuse
2	Direct Reuse
2	Direct Reuse
<20%	Beneficial Reuse?

Acknowledgements

JATER

- Aris Water Solutions
- Lisa Henthorne
- Whitney Dobson
- Study participants
- Hildenbrand Group
- Schug Group
- Zhang Group
- Gionfriddo Group
- Engle/Lin Groups
- TTI Environmental

Questions? zlhildenbrand@utep.edu

